

- base contains OH⁻ group
- acid + base \rightarrow salt + H₂O
- HCl + NaOH \rightarrow NaCl + H₂O

Acids

- In aqueous solution have the following properties:
 - sour taste
 - turn blue litmus paper red
 - neutralise bases

 If [H⁺] > 10⁻⁷ mol dm⁻³ the solution is acidic, and if [H⁺] < 10⁻⁷ mol dm⁻³ the solution is alkaline (or basic).

At 25 °C $pK_w = pH + pOH = 14$ • neutral solution: pH = pOH = 7• acidic solution: pH < 7 pOH > 7• alkaline solution: pH > 7 pOH < 7

pH at start

Solution

```
HCOOH \Rightarrow H^{+} + HCOO^{-}

pH = -log[H^{+}] = 2.38

log[H^{+}] = -2.38

[H^{+}] = 10^{-2.38}

= 4.2 \times 10^{-3} \text{ mol dm}^{-3}

= [HCOO^{-}]
```

$$\begin{array}{rcl} HCOOH &\rightleftharpoons H^+ &+ &HCOO^- \\ \mbox{Initial} & 0.10 & 0 & 0 \\ \mbox{Change} &-4.2 \times 10^{-3} &+4.2 \times 10^{-3} &+4.2 \times 10^{-3} \\ \mbox{Equi.} & 0.10-4.2 \times 10^{-3} &+4.2 \times 10^{-3} &+4.2 \times 10^{-3} \\ \mbox{K}_a &= \frac{[H^+][HCOO^-]}{[HCOOH]} \\ &= \frac{(4.2 \times 10^{-3})(4.2 \times 10^{-3})}{(0.10 - 4.2 \times 10^{-3})} \\ &= 1.8 \times 10^{-4} \end{array}$$

Assume x is small compared to 0.050, then $\frac{x^2}{0.050} \approx 4.5 \times 10^{-4}$ $x = 4.8 \times 10^{-3} \text{ mol dm}^{-3}$ Test approximation: $\frac{0.0048}{0.050} \times 100\% = 9.6\%$ i.e. more than 5% of original concentration so must solve quadratic equation.

$$x^{2} + 4.5 \times 10^{-4} x - 2.3 \times 10^{-5} = 0$$

x = 4.6 x 10⁻³ mol dm⁻³
= [H⁺]
pH = -log (4.6 x 10⁻³)
= 2.34

Solution

Assume x is small compared to 0.10, then $\frac{x^2}{0.10} \approx 1.8 \times 10^{-5}$ $x = 1.34 \times 10^{-3} \text{ mol dm}^{-3}$ Test approximation: $\frac{1.34 \times 10^{-3}}{0.10} \times 100\% = 1.34\% < 5\%$... approximation valid. $[OH^-] = x = 1.34 \times 10^{-3} \text{ mol dm}^{-3}$ pOH = 2.8 pH = 14 - 2.87= 11.13 Degree of ionisation, α

$$\alpha = \frac{1.34 \times 10^{-3}}{0.10} = 1.34 \times 10^{-2}$$

